差分

437 バイト除去 、 2023年8月18日 (金) 09:58
編集の要約なし
1行目: 1行目:  
== 熱核融合炉(Nuclear Fusion Reactor) ==
 
== 熱核融合炉(Nuclear Fusion Reactor) ==
原子核を融合させる際に生じるエネルギーを利用する動力機関。ガンダム世界、特に[[宇宙世紀]]作品ではエネルギー発生機として「ジェネレーター」と呼称されるのが一般的。宇宙世紀では、[[トレノフ・Y・ミノフスキー]]とその友人イヨネスコによって研究・開発された「ミノフスキー・イヨネスコ型熱核反応炉<ref>M&Y型・MYとも略される</ref>」と呼ばれるタイプが主流となっている。
+
原子核を融合させる際に生じるエネルギーを利用する動力機関。ガンダム世界、特に[[宇宙世紀]]作品ではエネルギー発生機として「ジェネレーター」と呼称されるのが一般的。宇宙世紀では、[[トレノフ・Y・ミノフスキー]]とその友人イヨネスコによって研究・開発された「ミノフスキー・イヨネスコ型熱核反応炉<ref>M&Y型・MYとも略される。</ref>」と呼ばれるタイプが主流となっている。
   −
ミノフスキー・イヨネスコ型熱核反応炉は、[[ミノフスキー粒子|ミノフスキー物理学]]を応用して[[Iフィールド]]でプラズマを封じ込め、高温高圧縮状態の維持と放射線の封じ込めを行っている。炉心内に展開されたIフィールドは核反応で発生したエネルギーを直接電力に変換する為、ボイラーやタービンといった機器が不要となる。これらの性質は、数百m~km単位のサイズを有する炉をm単位サイズにまで小型化させる一助となった。これによって電力や熱エネルギーなどが産出される他ミノフスキー粒子も副次的に生成される。これらのエネルギーの生成が行われる期間は長く実質的に無尽蔵と呼べるレベルの期間作動し続け人為的な操作による動作停止や破壊以外で停止する事は無い。
+
ミノフスキー・イヨネスコ型熱核反応炉は、宇宙世紀0047年に開発が開始され、0070年代に幅広く普及される事になり、[[モビルスーツ]]や宇宙艦艇、更には大型航空機や潜水艦等の動力源として使用されるようになる。
   −
M&Y型の開発は宇宙世紀0047年に開始され、0070年代には幅広く普及する事になり、[[モビルスーツ]]や宇宙艦艇、更には大型航空機や潜水艦等の動力源として使用された。
+
M&Y型融合炉は[[ミノフスキー粒子|ミノフスキー物理学]]を応用して[[Iフィールド]]でプラズマを封じ込め、高温高圧縮状態の維持と放射線の封じ込めを行っている。炉心内に展開されたIフィールドは、核反応で発生したエネルギーを超結晶格子構造を介して直接電力に変換する為、ボイラーやタービンといった機器が不要となる。これらの性質は、数百m~km単位のサイズを有する炉をm単位サイズにまで小型化させる一助となった。これによって電力や熱エネルギーなどが産出される他ミノフスキー粒子も副次的に生成される。これらのエネルギーの生成が行われる期間は長く実質的に無尽蔵と呼べるレベルの期間作動し続け人為的な操作による動作停止や破壊以外で停止する事は無い。
    
宇宙世紀0100年代に入るとMSの小型化に伴って構造の仕様変更が行われ、ヘリウム3と重水素をIフィールドで圧縮・縮退寸前の状態でIフィールド・シリンダーに貯蔵し、それらを炉心内で直接縮退させる改良型熱核融合炉が搭載されている。これによって燃料スペースの縮小による小型化と、さらなる高出力化を実現。更に出力レベルの可変も容易となり、ピークパワーの持続時間も長かったとされる。
 
宇宙世紀0100年代に入るとMSの小型化に伴って構造の仕様変更が行われ、ヘリウム3と重水素をIフィールドで圧縮・縮退寸前の状態でIフィールド・シリンダーに貯蔵し、それらを炉心内で直接縮退させる改良型熱核融合炉が搭載されている。これによって燃料スペースの縮小による小型化と、さらなる高出力化を実現。更に出力レベルの可変も容易となり、ピークパワーの持続時間も長かったとされる。
   −
高い安定性と小型・高出力を誇るM&Y型ではあるが、燃料となるヘリウム3が高圧環境下でミノフスキー粒子と結合することで臨界反応が発生し、ジェネレーターに直撃被害を受けた場合臨界爆発を引き起こすという問題も孕んでいた<ref>[[リゼル]]や[[ジャベリン]]など。作品によっては「核爆発」と呼ばれる場合もあるが、炉心への着火はレーザーによって行われる為、放射能汚染等のリスクはない。また、臨界状態にないヘリウム3を意図的に爆発させるには大量のミノフスキー粒子が必要となる。</ref>。この爆発の威力は[[スペースコロニー]]の外壁に容易に穴を開けてしまう規模のため、コロニー内でのモビルスーツ戦が躊躇われる一因となっている。改良型熱核融合炉では構造上この問題が顕著であり、MSの運用に際して大幅な制限が課せられる場合もあった<ref>ジェネレーターの出力が変更できる為、出力を低く設定する事で爆発のリスクを軽減する事は可能([[チャッペ]]など)。</ref>。ただし、炉心部はMSの装甲よりも強固な構造を採用しており、通常手段では破壊される事は無いとされ、MSの爆発は主に推進剤や内装火器の誘爆である事が多いとも言われている。
+
炉心部はMSの装甲よりも強固な構造を採用しており、通常手段では破壊される事はなく、MSの爆発は主に推進剤や内装火器の誘爆である事が多い。破壊された場合も膨張爆発を起こすに過ぎなかった<ref>それでも[[スペースコロニー]]の外壁に容易に穴を開けてしまう規模の爆発となり、コロニー内でのMS戦がためらわれる一因となっている。</ref>が、改良型融合炉にあっては最悪の場合、核爆発を引き起こす危険性が生じている<ref>ヘリウム3が高圧環境下でミノフスキー粒子と結合する事で臨界反応が発生し、ジェネレーターに直接被害を受けた場合は臨界爆発を引き起こす。この現象は熱核融合炉の改良以前にも度々見られた。なお、改良型融合炉はジェネレーターの出力が変更できる為、出力を低く設定する事で爆発のリスクを軽減する事は可能([[チャッペ]]など)。</ref>
   −
熱核融合炉はその性質上熱を発するため、これを搭載した兵器は排熱を行う必要があり特にモビルスーツにとっては推進剤と共に行動時間を決定するファクター<ref>先述の通り融合炉自体の稼動燃料枯渇による停止は原則生じない為。</ref>になっている。排熱は母艦や基地機材での冷却の他、自前の冷却装置や放熱フィンで行動中に熱を処理する例もある。また、この熱を利用して推進剤を加熱し<ref>同時に熱が移動し推進剤が冷却機能を持つ冷媒の機能を兼ねる事になる。放射性物質はIフィールドによって遮断される為、放射能汚染の危険性も無い。</ref>、推力を生み出すのが[[熱核ロケットエンジン]]及び[[熱核ジェットエンジン]]である。
+
熱核融合炉はその性質上熱を発するため、これを搭載した兵器は排熱を行う必要があり特にモビルスーツにとっては推進剤と共に行動時間を決定するファクターになっている。排熱は母艦や基地機材での冷却の他、自前の冷却装置や放熱フィンで行動中に熱を処理する例もある。また、この熱を利用して推進剤を加熱し<ref>同時に熱が移動し推進剤が冷却機能を持つ冷媒の機能を兼ねる事になる。放射性物質はIフィールドによって遮断される為、放射能汚染の危険性も無い。</ref>、推力を生み出すのが[[熱核ロケットエンジン]]及び[[熱核ジェットエンジン]]である。
    
[[スペースコロニー]]では太陽光発電の他に熱核融合炉による発電も行われており、コロニーや宇宙船など、サイズ上の制約や性能上の問題が少ない場合は大型だが大出力を得られる非M&Y型核融合炉が用いられているケースも存在する<ref>[[機動戦士ガンダムF91]]など。</ref>。
 
[[スペースコロニー]]では太陽光発電の他に熱核融合炉による発電も行われており、コロニーや宇宙船など、サイズ上の制約や性能上の問題が少ない場合は大型だが大出力を得られる非M&Y型核融合炉が用いられているケースも存在する<ref>[[機動戦士ガンダムF91]]など。</ref>。
6,166

回編集